Traffic during peak hours is getting worse over time and the duration of the peak is increasing in most metropolitan areas as more drivers try to use limited roadway capacity. Bottlenecks caused by traffic incidents or road construction limit roadway capacity even further and can cause traffic “shock waves.” When an incident causes a highway lane to close unexpectedly, vehicles are forced to change lanes close to the incident and at low speeds. These forced lane changes interfere with traffic flow in open lanes and decrease the overall flow of the roadway. Heavy-duty trucks can exacerbate congestion because they are larger and slower than passenger vehicles. Advanced technologies may help to improve traffic flow in these situations. Variable speed limits can change based on road, traffic, and weather conditions. Speed limits can be reduced in real time when congestion is imminent to smooth traffic flow and handle more traffic volume at a slower, but not stop-and-go, speed. Lane change control systems provide lane change recommendations well upstream of blocked lanes, spreading lane changes over a greater distance and minimizing bottlenecks that disrupt traffic flow.
This policy brief summarizes findings from researchers at the University of Southern California who simulated traffic patterns along a section of Interstate 710 near the Ports of Long Beach/Los Angeles, a congested area that gets substantial truck traffic. They simulated the use of variable speed limit and lane change control systems to evaluate the potential traffic impacts of these systems.