The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs have shorter driving range and lower payload capacity, which need to be taken into account when dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering backhauls and time windows. To optimize vehicle utilization, customers are categorized into two groups: linehaul customers requiring deliveries, where the deliveries need to be made following the last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering factors such as limited driving range, payload capacity of BETs, and the possibility of en route recharging. The researchers formulate the problem as a mixed-integer linear programming model and propose an algorithm that combines adaptive large neighborhood search and simulated annealing metaheuristics to solve it. The effectiveness of the proposed strategy is demonstrated through extensive experiments using a real-world case study from a logistics company in Southern California. The results indicate that the proposed strategy leads to a significant reduction in total energy consumption compared to the baseline strategy, ranging from 11% to 40%, while maintaining reasonable computational time. In addition, the proposed strategy provides solutions that are better than or comparable with those obtained by other metaheuristics. This research contributes to the development of sustainable transportation solutions in the freight sector by providing a novel approach for dispatching BET fleets. The findings emphasize the potential of deploying BETs to achieve energy savings and advance the goal of green logistics.