LITHIUM BATTERY AND ULTRA-CAPACITOR AGING
Electrification of
- Passenger vehicles
- Public transportation via bus, train or even hyperloop (possible)
- Commercial shipping via trucks

Improving emissions out of tailpipe

Less depended on fossil fuels as energy source

How to Improve?
- Extend battery life**
- Develop new power sources for vehicles
- Improve existing sources of power**
OBJECTIVE

- Model a vehicle with a battery
- Supplement the battery with an ultra-capacitor, UC
- Compare amount of battery life cycles with and without UC’s
- Determine if aging of either battery or UC is significant

Source: https://learn.sparkfun.com/tutorials/capacitors

Source: https://www.orbtronic.com/batteries-chargers/panasonic-3400mah-18650-li-ion-battery-cell-ncr18650b
SIMULATION BASED RESEARCH

- Allows for
 - Ease of quick results
 - Compare different data entries
 - Dynamic complex calculations done easy
 - Calculations can be made a function of time

- Use of MATLAB
 - Simulink used to build models within MATLAB
 - Multiple models integrated together
Dynamic model
- Uses outputs from pre determined drive cycle, function of time
- Forces taken into account
 - Gravity
 - Inertia
 - Rolling
 - Drag
- Manhattan Drive cycle used

Source: Mallon, K.

Source: https://www.dieselnet.com/standards/cycles/nybus.php
- P_{req} is electrical power required by the bus on set drive cycle
- P_{req} can also be negative, regenerative braking
- Backwards facing model
ENERGY STORAGE

Battery model
- Stores most of energy on board vehicle
- Internal capacitance, resistance based on changing SOC
- Aging applied within model, State of Aging
- Peak shaving
- Charge/discharge at 1C
 - Keep aging to a minimum

Ultra capacitor, UC
- Stores limited energy
- Takes power demand away from battery
- Can quickly put power back into system
- Aging applied within model, State of Health
- Power fluctuation minimized
- 100 cells in series, 100 cells in parallel is one UC bank
- Simplified battery schematic
- 2nd order
- \(SOC = \frac{Q}{Q_{\text{max}}(SOH)} \)
- Resistance, capacitance function of SOC
- **Hysteresis Effect**
 - Internal capacitance, resistance creates hysteresis
 - Delay before charging/discharging current can be at fullest
- **Why is this important?**
 - Increases fidelity for more accurate aging model results
Different order Ultra Capacitor, UC models simulated, (Dougal, R. et. al)

4th order chosen
- Closer, less error, to real world applications than 1st or 2nd order

Tested with 1 amp 15s duration
AGING MODELS

- Battery aging
 - Resistance and capacitance increase as function of SOC
 - (Erdinc O. et. al)

- Capacitor aging
- Aging: \(C_{out}(SOA) = 0.95C_i - 0.15SOA \)
- SOA is function of temperature and voltage
 - High temp, low voltage aging, (Kovaltchouk et. al)
MATLAB function within Simulink

- Function of
 - SOC of Battery
 - SOC of UC bank
 - Preq
 - Electrical power required by vehicle

- Outputs
 - Power to/from battery, Pbat
 - Power to/from UC, Pcap

- Function only allows power to battery within maximum (+-)
 - 1C charge/discharge
 - UC sized to take the rest

- Function allows UC to charge/discharge under extreme conditions while SOC remains between ~20-50%
TESTS RUN

- **Test 1**
 - Battery model with aging
 - No UC’s

- **Test 2**
 - Battery Model with aging
 - 1 UC bank, no aging

- **Test 3**
 - Battery model with aging
 - 1 UC bank with aging

- **Test 4**
 - Battery model with aging
 - 4 UC banks with aging
- Battery life cycles increase with help from UC
- Increased efficiency of battery

<table>
<thead>
<tr>
<th>Type of System</th>
<th>Cycle Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery aging only</td>
<td>3839</td>
</tr>
<tr>
<td>Battery aging with 1 UC Bank</td>
<td>4001</td>
</tr>
<tr>
<td>Battery aging with 1 aging UC Bank</td>
<td>4000</td>
</tr>
<tr>
<td>Battery aging with 4 aging UC’s</td>
<td>4069</td>
</tr>
</tbody>
</table>
More capacitors, increased battery cycles

Aging Caused by:
- Anode resistance
- Loss of active Lithium
- Thermal stress
 - Mostly UC

<table>
<thead>
<tr>
<th>Type of System</th>
<th>Cycle Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery aging only</td>
<td>3839</td>
</tr>
<tr>
<td>Battery aging with 1 UC Bank</td>
<td>4001</td>
</tr>
<tr>
<td>Battery aging with 1 aging UC Bank</td>
<td>4000</td>
</tr>
<tr>
<td>Battery aging with 4 aging UC’s</td>
<td>4069</td>
</tr>
</tbody>
</table>
RESULTS

- Battery SOC
 - Aging vs no aging
 - UC aging insignificant
RESULTS

Capacity Fade % in Capacitor

- Battery w/ 1 UC Aging: 22%
- Battery w/ 4 UC’s Aging: 10%

Capacity Fade % in Battery

- Battery: 19.9%
- Battery w/ 1 UC no Aging: 20.3%
- Battery w/ 1 UC Aging: 20.3%
- Battery w/ 4 UC’s Aging: 20.2%
RESULTS

- UC aging not significant compared to battery aging
- By adding more UC’s to the energy system
 - Decreased UC aging, take on larger load from battery
 - Decreased battery aging
- By adding 3 UC’s for a total of 4
 - UC life is ~2.2 times longer
 - Battery life is ~1.44 times longer
IMPROVEMENTS

- Model a high fidelity system
 - More accurate results
 - Longer computation time
 - Compare to current model results

- Looking at more advanced control for UC’s
 - Not use peak shaving method

- Build and test bench model
 - Program a controller
 - Controller works with test bench
 - Compare results

- Cost Benefit analysis
 - Find optimum amount of UC cells, added life equal to cost
Thank you!

References:

Erdinc, O., Vural, B., Uzunoglu, M. A dynamic lithium-ion battery model considering the effects of temperature and capacity fading. 2009 International Conference on Clean Electrical Power, ICCEP 2009. 383 - 386. 10.1109/ICCEP.2009.5212025.
