Empirical Analysis of Crowdsourced Google Travel Time Data for Sustainable Transportation Applications

Tului Gantulga
Undergraduate Research Assistant

Miguel Jaller, Ph.D.
Assistant Professor
University of California Davis

September 15th, 2016
Background and Objectives

• Google uses cellular devices to give live travel data and uses stored data to give the best estimates for future predictions.

• Objective: Maximize the efficiency of delivery trucks based on distance and traffic data provided by Google.
Methodology

- Development of a Python-based program to gather travel information from Google Directions API
- Analysis of travel time data
- Analyzed factors:
 - Size of study area
 - Number of Origin Destination (OD) pairs to simulate
 - Day of the week
 - Location (LA Metro, Cities in Latin-America)
 - Time of day (0-4, 4-6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-18, 18-20, 20-24)
- Estimation of congestion index
Program

GoogleAPI.py
Sends and receives information from Google

Variables.py
Input:
Coordinates
Length of Side
Etc.

TimeGetter.py
Converts Epoch time to date

Data
Saves results
Typical Results

<table>
<thead>
<tr>
<th>Number</th>
<th>Side Length</th>
<th>Time Interval</th>
<th>O_Lat</th>
<th>O_Long</th>
<th>D_Lat</th>
<th>D_Long</th>
<th>Distance (m)</th>
<th>Duration (sec)</th>
<th>Date</th>
<th>Duration (hr)</th>
<th>Distance (mi)</th>
<th>Speed (mi/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0 to 4</td>
<td>34.01456114</td>
<td>-118.2631999</td>
<td>34.01961271</td>
<td>-118.2618762</td>
<td>831</td>
<td>84</td>
<td>09/19/2016 03:55:52</td>
<td>0.023333333</td>
<td>0.516360744</td>
<td>22.12974618</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0 to 4</td>
<td>34.01674956</td>
<td>-118.2560542</td>
<td>34.01447272</td>
<td>-118.2526864</td>
<td>791</td>
<td>124</td>
<td>09/19/2016 00:37:18</td>
<td>0.034444444</td>
<td>0.491505835</td>
<td>14.26952423</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0 to 4</td>
<td>34.0179173</td>
<td>-118.2649256</td>
<td>34.01889942</td>
<td>-118.2588206</td>
<td>872</td>
<td>141</td>
<td>09/19/2016 03:47:07</td>
<td>0.039166667</td>
<td>0.541837026</td>
<td>13.83413684</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0 to 4</td>
<td>34.01913975</td>
<td>-118.2517788</td>
<td>34.02691506</td>
<td>-118.2623479</td>
<td>2110</td>
<td>276</td>
<td>09/19/2016 00:16:46</td>
<td>0.076666667</td>
<td>1.311096474</td>
<td>17.10125836</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0 to 4</td>
<td>34.01318571</td>
<td>-118.2503501</td>
<td>34.02271156</td>
<td>-118.2621979</td>
<td>2084</td>
<td>311</td>
<td>09/19/2016 01:04:46</td>
<td>0.086388889</td>
<td>1.294940783</td>
<td>14.98966823</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0 to 4</td>
<td>34.0231998</td>
<td>-118.2595373</td>
<td>34.02713772</td>
<td>-118.258464</td>
<td>1035</td>
<td>230</td>
<td>09/19/2016 00:13:47</td>
<td>0.063888889</td>
<td>0.643120782</td>
<td>10.06623833</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0 to 4</td>
<td>34.02463907</td>
<td>-118.2548999</td>
<td>34.0174542</td>
<td>-118.2542604</td>
<td>1127</td>
<td>216</td>
<td>09/19/2016 02:46:07</td>
<td>0.06</td>
<td>0.700287074</td>
<td>11.67145124</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0 to 4</td>
<td>34.01661131</td>
<td>-118.2649186</td>
<td>34.01530264</td>
<td>-118.2536455</td>
<td>1343</td>
<td>214</td>
<td>09/19/2016 00:41:30</td>
<td>0.059444444</td>
<td>0.834503585</td>
<td>14.03837807</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0 to 4</td>
<td>34.02402879</td>
<td>-118.2563726</td>
<td>34.02231242</td>
<td>-118.2565514</td>
<td>389</td>
<td>55</td>
<td>09/19/2016 00:40:44</td>
<td>0.015277778</td>
<td>0.241713995</td>
<td>15.82127964</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0 to 4</td>
<td>34.01422432</td>
<td>-118.2656578</td>
<td>34.02438247</td>
<td>-118.2600867</td>
<td>1279</td>
<td>181</td>
<td>09/19/2016 01:15:12</td>
<td>0.050277778</td>
<td>0.79473573</td>
<td>15.8068985</td>
</tr>
</tbody>
</table>
Numerical Results
Size of Study Area (Downtown, 250 ODs)

- Average Speeds per time period for different square areas of different side lengths (in miles)

- Afternoon peak has a greater impact than morning peak
- The larger the area, higher average speeds
Number of ODs per Area (Downtown, 1 sq mi)
Day of the Week (250 Ods, 1 sq mi)

- Not much difference for this Downtown location. Other locations showed different speed profiles
Location (LA Metro, 250 ODs, 1 sq mi)

• Downtown area exhibits the lowest average speeds. Pasadena showed the highest congestion impact.
Latin America (250 ODs, 1 sq mi)

• Latin-American cities show slower average speeds than Los Angeles. (Speed limits are also lower)

• Santiago and Sao Paulo core areas are very congested
General Findings

- Programming is fun and StackOverFlow is your best friend.
- Google predictions are consistent with other GPS data.
Thank you!
tgantulga@ucdavis.edu
mjaller@ucdavis.edu